AD=A032 123 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F/6 9/2
THE EARLY DEVELOPMENT OF PROGRAMMING LANGUAGES.(U)
AUG 76 D E KNUTHr L T PARDO N00014-76-C-0350
UNCLASSIFIED STAN-CS-76-562

ADAUVSZ2123

THE EARLY DEVELOPMENT OF PROGRAMMING LANGUAGES

by

Donald E. Knuth
Luis Trabb Pardo

STAN-CS-76-562
AUGUST 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

/
by 4
(/:\//\

" DISTRIBUTION

Approved tor public relecmsg
Distribution Unlimited

P

S

Fnget e < 7 A

The Early Development of Programming Languages

by Donald E. Knuth and Luis Trabb Pardo

Computer Science Department
Stanford University
Stanford, California 94305

Abstract.
%
This paper surveys the evolution of "high level" programming languages

during the first decade of computer programming activity. We discuss the
contributions of Zuse (“blankalkﬁl#: 1945), Goldstine/von Neumann (”ﬁlow
Diagrams™; l9h6) Curry (”%bmpositionJT 1948), Mauchly et al. (#%Hort Code#:
1950), Burks ("Intermediste PL¥, 1950), Rutishauser (1951), BShm (1951),
Glennie (*AUTOCODEY, 1952), Hopper et al. (*k-z" 1953), Laning/Zierler
(1953), Backus et al. (*‘?"ORTRAN"’ 1954-1957), Brooker ("Mark I Autocode,
1954), Kamynin/Liubimskii (mr-2", 195L), Ershov ("ﬂﬂ“, 1955), Grems/Porter
("BAcAICT, 1955), Elsworth et al. (“Kompiler 2" 1955), Blum ("ADES", 1956),
Perlis et al. ("IT", 1956), Katz et al. ('MATH MATIC"?'1956 1958),
Hopper et al. ("FLOW-MATIC”, 1956-1958), Bauer/Samelson (1956-1958).
The principal features of each contribution are illustrated; and for
purposes of comparison, a particular fixed algorithm has been encoded
(as far as possible) in each of the languages. This research is based
primarily on unpublished source materials, and the authors hope that they
have been able to compile a fairly complete picture of the early
developments in this area.

This article was commissioned by the Encyclopedia of Computer Science
and Technology,‘ed. by Jack Belier, Albert G. Holzman, and Allen Kent,
and it is schedﬁled to appear in vol. 6 or vol. 7 of that encyclopedia
during 1977.

The preparation of this paper has been supported in part by Netional
Science Foundation grant MCS 72-03752 AO3, by the Office of Naval Research
contract NOOOL4-76-C-0330, and By IBM Corporation. Reproduction in whole
or in part is permitted for any purpose of the United States Government.

-~

i
.f
: 1
£

The Early Development of Programming Languages

It is interesting and instructive to study the history of a subject
not only because it helps us to understand how the important ideas were
born -- and to see how the "human element" entered into each development --
but also because it helﬁglus to‘;ppreciate the amount of progress that
has been made. This is especially striking in the case of programming
languages, a subject which has long been undervalued by computer scientists.
. After learning a high-level language, a person often tends to think mostly
of improvements he or she would like to see (since all languages can be
improved), and it is very easy to underestimate the difficulty of creating
that language in the first place. The real depth of this subject can
only be properly perceived when we realize how long it took to develop
the important concepts which we now regard as self evident. These ideas
were by no means obvious a priori, and many years of work by brilliant
and dedicated people were necessary before our current state of knowledge
was reached.

The goal of this paper is to give an adequate account of the early
nistory of "high level" programming langvages, covering roughly the first
decade of their development. Our story will take us up to 1957, when the
practical importance of algebraic compilers was first being demonstrated,
and when computers were just beginning to be available in large numbers.

We will see how people's fundamental conceptions of algorithms and of the
programming process evolved during the years -- not always in a forward
direction -- culminating in languages such as FORTRAN I. The best languages
we shall encounter are, of course, very primitive by today's standards, but
they were good enough to touch off an explosive growth in language
development; the ensuing decade of intense activity has been ZJetailed in
Jean Sammet's 785-page book [SA 69]. We shall be concerned with the more
relaxe? atmosphere of the "pre-Babel" days, when people who worked with
computers foresaw the need for important aids to programming that did not
yet exist., In many cases these developments were so far ahead of their
time that they remained unpublished, and they are still largely unknown
today.

Altogether we shall be considering about 20 different languages, and
it follows that we will have neither the space nor the time to characterize
any one of them completely; besides, it would be rather boring to recite
so many technical rules. The best way to grasp the spirit of a programming
language is to read example programs, so we shall adopt the following
strategy: A certain fixed algorithm -- which we shall call the "TPK
algorithm" for want of a better namef/ -- will be expressed as a program in
each language we discuss. Informal explanations of this program should
then suffice to capture the essence of the corresponding language,
although the TPK algorithm will of course not exhaust that language's
capabilities; once we have understood the TPK program, we will be able
to discuss the most important language features it does not reveal.

Note that the same algorithm will be expressed in each language,
in order to provide a simple means of comparison. A serious attempt
has been made to write each program in the style originally used by the
author of the corresponding language; and if comments appear next to the
program text, they attempt to match the terminology used at that time
by the originel authors. Our treatment will therefore be something
like "a recital of Chopsticks as it would have been played by Bach,
Beethoven, Brahms, and Brubeck." The resulting programs are not truly
authentic excerpts from the historic record, but they will serve as
fairly close replicas; the interested reader can pursue each language
: further by consulting the bibliographic references to be given.

4 The exemplary TPK algorithm which we shall be using so frequently
can be written as follows in a dialect of Algol 60.

- ABCESSID
TPK: begin integer i; real y; real array a[0:10]; 7&;—£1j' 5
White Soctian

real procedure f(t); real t; value t; hog Wil Scton [

F = sart(abs(t)) +5 x 13; A 4

for i := 0 StEE 1 until 10 do read(a[i]); :
10 step -1 until O do SR
s GISTRIBUTION /AVAILABILITY Coors

I

for 1 ¢
begin y := f(a[i]);
if y > L0OO then write(i,"TOO LARGE")

else write(i,y);

TR
T |

| |
end { ? ! ;

~~~

end.

~~

S

|S o i oy Vs M o

*
—/Cf. "Grimm's Law" in comparative linguistics, and/or the word "typical",
ané/or the names of the authors of this article.

’ 3




(Actually Algol 60 is not one of the languages we shall be discussing,
since it was a later development, but the reader ought to know enough
about it to understand TPK. If not, here is a brief run-down on what
the above program means: Line 1 says that 1 1is an integer-valued

variable, while y takes on floating-point approximations to real

values; and 80y 8ys s eey8y, are also real valued. Lines 2 and 3 define

the function f(t) = VT;T.+ St3 , for use in the algorithm proper

which starts on line 4. Line L reads in the values By 815 eeerByg
in this order; then line 5 says to do lines 6, 7, 8, 9 (delimited by
begin and end ) for i =10,9,...,0 , in that order. The latter 4
lines cause y to be set to f(ai) , and then one of two messages is :

written out. The message is either the current value of i followed

by the words "TOO LARGE" , or the current values of i and y,
according as y > 40O or not.)

Of course this algorithm is quite useless; but for our purposes
it will be helpful to imagine ourselves vitally interested in the process.
Let us pretend that the function f£(t) ==VT;I it 5t5 has a tremendous
practical significance, and that it is extremely important to print out
the function values f(ai) in the opposite order from which the a,
are received. This will put us in the right frame of mind to be reading
the programs. (If a truly useful algorithm were being considered here,
it would need to be much longer in order to illustrate as many different
programming language features.)

Meny of the programs we shall discuss will have italicized line
numbers in the left-hand margin, as in the Algol code above. Such numbers
are not really part of the programs, they appear only so that the
accompanying text can refer easily to any particular line.

It turns out that most of the early high-level languages were
incapable of handling the TPK algorithm exactly as presented above;
so we must make some modifications. In the first place, when a language
deals only with integer variables, we shall assume that all inputs and

"

outputs are integer valued, and tha sqrt(x) " denotes the largest

integer not exceeding /X . Secondly, if the language does not provide




for alphabetic output, the string "TOO LARGE" will be replaced by the
number 999 . Thirdly, some languages do not provide for input and
output at all; in such a case, we shall assume that the input values
802 8y5 + e er 8y have somehow been supplied by an external process, and
that our job is to compute 22 output values bO’bl""’bEl . oHere
bo,be,...,b20
alternate positions bl,b

will be the respective " i values" 10,9,...,0 , and the
5""’b21 will contain the corresponding f(ai)
values and/or 999 codes. Finally, if a language does not allow the
programmer to define his own functions, the statement " y := f(a[i]) "
will essentially be replaced by its expanded-out form

" y := sqrt(abs(a[i])) +5 xa[i]l 13 ".

Prior develogments.

Before getting into real programming languages, let us try to set
the scene by reviewing the background very quickly. How were algorithms
described prior to 19457

The earliest known written algorithms come from ancient Mesopotamia,
about 2000 B.C. In this case the written descriptions contained only
sequences of calculations on particular sets of data, not an abstract
statement of the procedure; it is clear that strict procedures were
being followed (since, for example, multiplications by 1 were explicitly
performed), but they never seem to have been written down. Iterations
like " for i := 0 step 1 wntil 10 " were rare, but when present they
would consist of a fully-expanded sequence of calculations. (See [KN 72],
for a survey of Babylonian algorithms.)

By the time of Greek civilization, several nontrivial abstract
algorithms had been studied rather thoroughly; for example, see (kN 69,

p. 295] for a paraphrase of Euclid's presentation of "Euclid's algorithm".
The description of algorithms was always informal, however, rendered
in natural language.

During the ensuing centuries, mathematicians never did invent a
good notation for dynamic processes, although of course notations for
(static) functional relations became highly developed. When a procedure
involved nontrivial sequences of decisions, the available methods for

precise description remained informai and rather cumbersome.

\N




2 aEauaiane ]

v

5

~ e

o ————— e e e =t

—m——e =

T e T

Example programs written for early computing devices, such as those
Tor Babbage's Calculating Engine, were naturally presented in "machine
language" rather fhan in a true programming language. Thus: (a) The
three-address code for Babbage'c machine was to consist of instructions

such as " VL_xVb = V,. ", where operation signs like " x " would appear

on an Operation-card}oand subscript numbers like (4, 0, 10) would appear
on a separate Variable-card. The most elaborate program developed by
Babbage and Lady Lovelace for this machine was a routine for calculating
Bernoulli numbers; see [BA 61, pp. 68, 286-297]. (b) In 1914, Leonardo
Torres y Quevedo used natural language to describe the steps of a short
program for his hypothetical automaton; and Helmut Schreyer gave an
analogous description in 1939 for the machine he had helped Konrad Zuse
to build [see RA 73, pp. 95-98, 167]. (c¢) An example MARK I program
given in 1946 by Howard Aiken and Grace Hopper [see RA 73, pp. 216-218]
shows that its machine language was considerably more complicated.
Although all of these early programs were in a machine language,
it is interesting to note that Babbage had noticed already on July 9, 1836

that machines as well as people could produce programs as output:

This day I had for the first time a general but very indistinct
conception of the possibility of making an engine work out algebraic
developments. I mean without any reference to the value of the
letters. My notion is that as the cards (Jacquards) of the

Calc. engine direct a series of operations and then recommence

with the first so it might perhaps be possible to cause the same
cards to punch others equivalent to any given number of repetitions.
But there hole [sic] might perhaps be small pieces of formulae
previously made by the first cards. [RA 73, p. 349]

To conclude this survey of prior developments, let us take a look at
A. M. Turing's famous mathematical paper of 1936 [TU 36], where the
concept of a universal computing machine was introduced for theoretical
purposes. Turing's machine language was more primitive, not having a
built-in arithmetic capability, and he defined a complex program by

giving what amounts to macro-expansions or open subroutines., For example,

"

on

here was his program for making the machine move to the leftmost " a

its working tape:




TR

behavior final m-config.
- £,(cB2)
L £(c,B,a)
€
A £,(G3B8)
R £,(CB,2)
(0
R (G Bre)
R

20N




[In order to carry out this operation, one sends the machine to state

f(C,B,a) ; it will immediately begin to scan left (L) until first

passing the symbol o5 . Then it moves right until either encountering
the symbol a or two consecutive blanks; in the first case it enters
into state C while still scanning the a , and in the second case it
enters state: B after moving to the right of the second blank. Turing
used the term < "m-configuration" for state.]

Such "skeleton tables", as presented by Turing, represented the
highest-level notations for precise algorithm description that were
developed before our story begins -- except, perhaps, for Alonzo Church's
"A-notation" [CH 36] which represents an entirely different approach to
calculation. Mathematicians would traditionally present the control
mechanisms of algorithms informally, and the computations involved would
be expressed by means of equations. There was no concept of assignment
(i.e., of replacing the value of some variable by a new value); instead

"

of writing " s « -s one would write s = —sn , giving a new name to

ntl
each quantity that would arise during a sequence of calculations.

Zuse's "Plancalculus".
R e e Y e e o e

Near the end of World War II, Allied bombs destrcyed nearly all of
the sophisticated relay computers that Konrad Zuse had been building in
Germany since 1936. Only his Z4 machine could be rescued, in what Zuse
describes as a fantastic ["abenteuerlich"] way; and he moved the Z4 to

a little shed in a small Alpine village called Hinterstein.

It was unthinkable to continue practical work on the equipment;
my small group of twelve co-workers disbanded. But it was now a
satisfactory time to pursue theoretical studies. The Zh Computer
which had been rescued could barely be made to run, and no
especially algorithmic language was really necessary to program
it anyway. [Conditional commands had consciously been omitted;
see [RA 73, p. 181].] Thus the PK [Plankalkil] arose purely as a
piece of desk-work, without regard to whether or not machines
suitable for PK's programs would be available in the foreseeable

future. [2U 72, p. 6].




-

Zuse had previously come to grips with the lack of formal notations
for algorithms while working on his planned doctoral dissertation

[zU b4]. Here he had independently developed a three-address notation
remarkably 1like that of Babbage; for example, to compute the roots

) and X5 of x2-+ax-+b =0, given a = Vl and b = V2 5 he
prepared the following Rechenplan [p. 26]:

Vl:2 = V5
V'B‘V3 = Vh
bl s

VB(_1> = V7
V7-+V6 = V8 = xl
V7'V6=V9—x2 .

He realized that this notation was limited to straight-line programs

[so-called starre Plane], and he concluded his previous manuscript with
the following remark:
Unstarre Rechenpldne constitute the true discipline of higher

combinatorial computing; however, they cannot yet be treated in
this place. [ZU 44, p. 31]

The completion of this work was the theoretical task Zuse set himself
in 1945, and he pursued it very energetically. The result was an amazingly
comprehensive language which he called the Plankalkiil [program calculus],
an extension of Hilbert's Aussagenkalkiil [propositional calculus] and
Pradikatenkalkiil [predicate calculus]. Before laying this project aside,
Zuse had completed an extensive manuscript containing programs far more
complex than anything ever written before. Among other things, there were
algorithms for sorting; for testing the connectivity of a graph represented
as a list of edges; for integer arithmetic (including square roots) in

binary notation; and for floating-point arithmetic. He even developed




b o i Sue e

e e S SR b SO e fihe et i

algorithms to test whether or not a given logical formula is syntactically
well-formed, and whether or not such a formula contains redundant
parentheses -- assuming six levels of precedence between the operators.
To top things off, he also included 49 pages of algorithms for playing
chess. (Who would have beli.gved that such pioneering developments
could emerge from the solitary village of Hinterstein? His plans to
include algorithms for matrix calculations, series expansions, etc.,
had to be dropped since the necessary contacts were lacking in that
place; furthermore, his chess playing program treated '"en passant
captures" incorrectly, because he could find no chess boards or people
to play chess with [ZU 72, pp. 32, 351!)

Zuse's 1945 manusccript unfortunately lay unpublished until 1972,
although brief excerpts appeared in 1948 and 1959 [ZU 48, ZU 59]; see also
[BW 72], where his work was brought to the attention of English-speaking
readers for the first time. It is interesting to speculate about what
would have happened if he had published everything at once; would many
people have been able to understand such radical new ideas?

The monograph [ZU 45] on Plankalkiil begins with the following

statement of motivation:

Aufgabe des Plankalkiils ist es, beliebige Rechenvorschriften rein
formal darzustellen. [The mission of the Plancalculus is to

provide a purely formal description of any computational procedure. ]

So, in particular, the Plankalkiil should be able to describe the TPK
algorithm; and we had better turn now to this program, before we forget

what TPK is all about. Zuse's notation may appear somewhat frightening

at first, but we will soon see that it is really not difficult to understand.




e e k. et =

1 2= (a9,401)

2 B R(V) = R

5 vl o 0

4 Al M ol

2 \/—m ) V3 = R

6 0 0 0

= Al A AL Al

8 R(V) = R

] v 0 0

10 Al 11l xaAl 1l1x2

1 w) [ rv) =z

12 v 0 0 0

33 i

1k Al Al

15 Zz>h0 = (i,+w) = R [ (10-i)
16 v 0 0

17 K

18 Al 9 2 9
19 25000 = (i,2) = R r-(10-%)
20 0 0 0

21 K

22 A | M 9 Al 2 9

Line 1 of this code is the declaration of a compound data type, and
before we discuss the remainder of the program we should stress the richness
of data structures provided by Zuse's language (even in its early form
[zUu 44]). This is, in fact, one of the greatest strengths of the
Plankalkiil; none of the other languages we shall discuss had such a
perceptive notion of data, yet Zuse's proposal was simple and elegant.

He started with data of type SO, a single bit ["Ja-Nein-Wert"] whose
nwo_n

value is either " =" or "+", From any given data types Ogreee2 9 q

a programmer could define the compound data type (GO,...,Ok_l) s and

4L




Chinda e

individual components of this compound type could be referred to by
applying the subscripts O ,..., k-1 to any variable of that type.
Arrays could also be defined by writing mx0 , meaning m identical
components of type 0 ; and this idea could be repeated, in order to
obtain arrays of any desired dimension. Furthermore m could be "(O",
meaning a list of variable length, and Zuse made good use of such list
structures in his algorithms dealing with graphs, algebraic formulas, and
chessplay.

Thus the Plankalkiil included the important concept of hierarchically
structured data, going all the way down to the bit level. Such advanced
data structures did not enter again into programming languages until the
late 1950's, in IBM's Commercial Translator. The idea eventually
appeared in many other languages, such as FACT, COBOL, PL/I, and
extensions of ALGOL 60; cf. [CL 61] and [SA 69, p. 325].

Integer variables in the Plankalkil were represented by type A9 .

Another special type was used for floating-binary numbers, namely

AMl = (3x80,7xS0,22x80) .

The first three-bit component here was for signs and special markers --
indicating, for example, whether the number was real or imaginary or zero; the
second was for a seven-bit exponent in two's complement notation; and

the final 22 bits represented the 23-bit fraction part of a normalized number,
with the redundant leading " 1" bit suppressed. Thus, for example, the
floating-point number +400.0 would have appeared as

(-+- 2 A ! uibie g vapted it ot bt e ol +--+) J

and it also could be written
(L0 y LOOO , LOOLOOOO0O000000000000)

[The +'s and -'s notation has its bits numbered O0,1,... from left-to-
right, while the L's and O's notation corresponds to the more familiar
binary notation, putting most significant bits at the left.] There was a
special representation for "infinite" and "very small" and "undefined"

quantities; for example, h




+o = (LLO, L0000, 0) .

Note that the above program uses + = instead of 999 on line 15, since
such a value seems an appropriate way to render the concept "TOO LARGE" .
Let us return now to the program itself. Line 1 introduces the data
type A2 , namely an ordered pair whose first component is an integer
(type A9 ) and whose second component is floating-point (type Aal ).
This data type will be used later for the 11 outputs of the TPK algorithm.
Lines 2 thru 7 define the function f(t) , and lines 8 thru 22 define the

i o ik

main TPK program. 3
The hardest thing to get used to about Zuse's notation is the fact

that each operation spans several lines; for example, lines 1l thru & must

be read as a unit. The second line of each group (labelled " V") is used

to identify the subscripts for quantities named on the top linej; thus

R, V, Z stands for > variables RO s VO s Zg e Operations are done
L4 3B 0 (o
primarily on output variables ["Resultatwerte"] Rk , input variables %

["Variablen"] Vk , and intermediate variables ["Zwischenwerte"] Zk s
The " K" line is used to denote components of a variable, so that, in
3 ’ our example, g means component i of the input variable V, .
[ :
(A completely blank " K" line is normally omitted.) Complicated subscripts
can be handled by making a zig-zag bar from the K-line up to the top line, 1

as in line 17 of the above program where the notation indicates component

ATy

10-i of Ry . The bottom line of each group is labeled A or S, and
it is used to specify the type of each variable. Thus the "2" in line 18
of our example means that R, 1s of type A2 ; the " Al " means that Zn ‘
is floating-point (type AAl ); and the " 9" means that i is an integer.
Thus each " A" in the left margin is implicitly attached to all types in
its line.

Zuse remarked [ZU 45, p. 10] that the number of possible data types
was so large, it would be impossible to indicate a variable's type simply 3
by using typographical conventions as in classical mathematicsj; thus he

realized the importance of apprehending the type of each variable at
each point of a program, although this information is usually redundant.
This is probably one of the main reasons he introduced the peculiar
multi-line format. Incidentally, a somewhat similar multi-line notation

13




has been used in recent years to describe musical notes [SM 73]; it is
interesting to speculate if this notation will evolve in the same way
that programming languages have.

We are now ready to penetrate further into the meaning of the above
code. Each plan begins with a specification part ["Randauszug"], stating
the types of all inputs and outputs. Thus, lines 2 thru ﬁ mean that Pl

is a procedure that takes an input V., of type AAl (floating point) and

produces R, of the same type. Lineg 8 thru 10 say that P2 maps Vy of
type 11 xAAl (nemely, a vector of 1 floating-point numbers, the array a;
of our TPK algorithm) into a result RO of type 11 xA2 (namely, a vector
of 11 ordered pairs as described earlier).

The double arrow = , which Zuse called the Ergibt-Zeichen (yields-sign),

was introduced for the assignment operation; thus the meaning of lines 3
thru 7 should be clear. As we have remarked, mathematicians had never
used such an operator before; in fact, the systematic ucse of assignments
constitutes a distinct break between computer-science thinking and
mathematical thinking. Zuse consciously introduced a new symbol for the

new operation, remarking [ZU 45, p. 15] that Z+1 = Z was analogous to
3 3

to the more traditional equation Z +1 = Z . (Incidentally, the
Hled, G AL

publishers of [ZU 48] used the sign > instead of = , but Zuse never
actually wrote = himself,) Note that the variable receiving a new value
appears on the right, while most present-day languages have it on the left.
We shall see that there was a gradual "leftist" trend as languages
developed.

It remains to understand lines 1l thru 22 of the example. The notation
" w2(n) " represents an iteration, for i = n-1 down to O , inclusive;
hence W2(1l) stands for the second for loop in the TPK algorithm.
(The index of such an iteration was always denoted by i, or i.0 ; if
another iteration were nested inside, its index would be called i.l,
etc.) The notation gl(x) on line 11 stands for the result R, of

applying procedure Pl to input x . Lines 15 thru ;Q of the program mean
"Aif 75 > 40O then Ro[lO-i] := (1, +®) "; note Zuse's new notation =

for conditionals. Lines 19 thru 22 are similar, the bar over " Z, > Loo "
indicating the negation of that relation., There was no equivalent of

else " in the Plankalkiil, nor were there go to statements. Zuse did,

14




G ea e G by

R

however, have the notation " Fin "

with superscripts, to indicate a
jump out of a given number of iteration levels and/or to the beginning
of a new iteration cycle [cf. ZU 72, p. 28; 2ZU 45, p. 32]; this idea
has recenitly been revived in the BLISS language [WR 71].
The reader should now be able to understand the above code completely.
In the text accompanying his programs in Plankalkiil notation, Zuse
made it a point to state also the mathematical relations between the

variables which appeared. He called such a relation an impliciter Ansatz;

we would now call it an "invariant". This was yet another fundamental

idea about programming; and, like Zuse's data structures, it disappeared
from programming languages during the 1950's, waiting to be enthusiastically
received when the time was ripe [HO 71].

Zuse had visions of using the Plankalkiil some day as the basis of a
programming language that could be translated by machine (cf. [ZU 72,
pp. 5, 18, 33, 3L4]); but in 1945, he was considering first things first
-- namely, he needed to decide what concepts should be embodied in a
notation for programming. We can summarize his accomplishments by
saying that the Plankalkiil incorporated many extremely important ideas, but
it lacked the "syntactic sugar" for expressing programs in a readable
and easily writable format.

Zuse says he made modest attempts in later years to have the
Plankalkiil implemented within his own company, "but this project
necessarily foundered because the expense of implementing and designing
compilers outstripped the resources of my small firm." He also mentions
his disappointment that more of the ideas of the Plankalkiil were not
incorporated into Algol 58, since some of Algol's original designers
knew of his work. [2ZU 72, p. 7] Such an outcome was probably inevitable,
because the Plankalkiil was far ashead of its time from the standpoint of
available hardware and software development. Most of the other languages
we shall discuss started at the other end, by asking what was possible
to implement rather than what was possible to write; and it naturally
took many years for these two approaches to come together and to achieve
a suitable synthesis.

15




Flow Diagrams.

On the other side of the Atlantic, Herman H. Goldstine and John
von Neumann were wrestling with the same sort of problem that Zuse had
faced: How should algorithms be represented in a precise way, at a
higher level than the machine's language? Their answer, which was due
in large measure to Goldstine's analysis of the problem together with
suggestions by von Neumann, Adele Goldstine, and Arthur W. Burks [GO 72,
pp. 266-268], was quite different from the Plankalkiil: they proposed &
pictorial representation involving boxes joined by arrows, and they called
it a "flow diagram". During 1946 and 1947 they prepared an extensive
and carefully worked out treatise on programming based on the idea of
flow diagrams [GV 47], and it is interesting to compare this work to
that of Zuse. There are striking differences, such as an emphasis on
numerical calculation rather than on data structures; and there are also
striking parallels, such as the use ot the term "Plan" in the titles of
both documents. Although neither work was published in contemporary
journals, perhaps the most significant difference was that the treatise
of Goldstine and von Neumann was beautifully "Varityped" and distributed
in quantity to the vast majority of people involved with computers at
that time. This fact, coupled with the high quality of presentation and
von Neumann's prestige, meant that their report had an enormous impact,
forming the foundation for computer programming techniques all over the
world. The term "flow diagram" became shortened to "flow chart" and
eventually it even became "flowchart" -- a word which has entered our
language as both noun and verb.

We all know what flowcharts are; but comparatively few people have
seen an authentic original flow diagram. In fact, it is very instructive
to go back to the original style of Goldstine and von Neumann, since

their inaugural flow diagrams represent a transition point between the

mathematical "equality" notation and the computer-science "assignment"
operation. Here is how the TPK algorithm would probably have looked,
if Goldstine and Von Neumann had been asked to deal with it in 1947:




i Adj 2'l°aj {55 0} s r10)
A E-IOaJ (3 =0, 5 10) B.j by (4 = 0,.00y19-24)
c.1 10.2729 cl 2709
g 2 (a+10)o 2 (a.fi.')O
3 (b)) 3 (b+2c-21)0 B.J by (i Ty o -
: T
’ 10272 to c.1
@—-l—h—v (at10), to 2 O
: o e
; (b)0 to 3

VII

570904.1)  bos 0.

(sti-1); to 2

(bv22-21); to

W

(b+20-21)

B.21-21

4=10_

|




Several things need to be explained about this original notation,
and probably the most important consideration is the fact that the boxes

containing " 10 - i " and " i-1 - i "

were not intended to specify any
camputation. This amounts to a significantly different viewpoint than

we are now accustomed to, and the reader will find it worthwhile to
ponder this conceptual difference until he or she understands it. The
box " i-1 - i " represents merely a change in notation, as the flow

of control passes that point, rather than an action to be performed by
the computer. For example, box VII has done the computatim necessary

to place 2—59(i-l) into storage position C.l ; so after we pass the
box " i-1l - i " and go thru the sucsequent junction point to box II,
location C.l1 now contains 2'39i . The external notation has changed
but location C.l has not! This distinction between external and internal
notations occurs throughout, the external notation being problem-oriented
while the actual contents of memory are machine-oriented. The numbers
attached to each arrow in the diagram indicate so-called "constancy
intervals", where all memory locations have constant contents and all
bound variables of the external notation have constant meaning.

A "storage table" is attached by a dashed line to the constancy intervals,
to show the relevant relations between external and internal values at
that point. Thus, for example, we note that the box " 10 — i " does

not specify any computation, but it provides the appropriate transition
from constancy interval 1.5 to constancy interval 2 . (Cf. [GV L47,

§§ 7.6, 7.71.)

There were four kinds of boxes in a flow diagram: (a) Operation
boxes, marked with a Roman numeral; this is where the computer program
was supposed to make appropriate transitions in storage. (b) Alternative
boxes, also marked with a Roman numeral, and having two exits marked +
and - ; this is where the computer control was to branch, depending on
the sign of the named quantity. (c) Substitution boxes, marked with a

"

# and using the " - " symbol; this is where the external notation for
a bound variable changed, as explained above. (d) Assertion boxes, also
marked with a # ; this is where important relations between external

notations and the current state of the control were specified. The

example shows three assertion boxes, one which says " i = -1 ", and two

18




which assert that the outputs ug and ¥ (in a problem-oriented
notation) now have certain values. Like substitution boxes, assertion
boxes did not indicate any action by the computer, they merely stated
relationships which helped to prove the validity of the program and
which might help the programmer to write code for the operation
boxes.
The next most prominent feature about original flow-diagrams is
the fact that a programmer was required to be conscious of the scaling
(i.e., the binary point location) of all numbers in the computer memory.
3 A computer word was LO bits long and its contents was to be regarded as a binary
fraction x in the range -1 <x <1 . Thus, for example, the above
flowchart assumes that 2'loaj is initially present in storage position
A.j , rather than the value aj itself; and the outputs bj are
5 similarly scaled.

The final mystery which needs to be revealed is the meaning of

" "

notations such as (a#i)o 5 (b)O , etc. In general, X, " was used

when x was an integer machine address; and it represented the number

0719 +273% | nemely a binary word with x appearing twice, in bit
positions 9 to 20 and 29 to LO (counting from the left). Such a
number could be used in their machine to modify the addresses of 20-bit
instructions that appeared in either half of a LO-bit word.

4 Once a flow diagram such as this had been drawn up, the remaining
task was to prepare so-called "static coding" for boxes marked with
Roman numerals. In this task a programmer would use his problem-solving
ability, together with his knowledge of machine language and the

$ information from storage tables and assertion boxes, to make the required
transitions. For example, in box VI one should use the facts that u, = 15
that storage D contains 2-lovi , that storage C.l1 contains 2'391 3
and that storage C.3 contains (b+20 -21)0 [a word corresponding to

5 the location of variable B.20-2i ] to carry out the specified assignments.
The job of box VII is slightly trickier: One of the tasks, for example,
is to store (b+22 —21)0 in location C.3 ; the programmer was supposed
to resolve this by adding 2-(2”7 +273%)
In general, the job of static -~oding required a fairly high level of

to the previous contents of C.3 .

artificial intelligence, and 1. was far beyond the state of the art in

19




.

in those days to get a computer to do such a thing. As with the
Plankalkiil, the notation needed to be simplified if it was to be

suitable for machine implementation.

Let us make one final note about flow diagrams in their original
form: Goldstine and von Neumann did not suggest any notation for
subroutine calls, hence the function f(t) in the TPK algorithm has
been written in-line. In [GV 47, §12] there is a flow diagram for
the algorithm that a loading routine must follow in order to relocate
subroutines from a library, but there is no example of a flow diagram
for a driver program that calls a subroutine. An appropriate extension
of flow diagrams to subroutine calls could surely be made, but it would

have made our example less "authentic".

A Logician's AEEroach.

Let us now turn to the proposals made by Haskell B. Curry, who was
working at the Naval Ordnance Laboratory in Silver Spring, Maryland;
his activity was partly contemporaneous with that of Goldstine and
von Neumann, since the last portion of [GV 47] was not distributed until
1948,

Curry wrote two lengthy memoranda [CU 48, CU 50] which have never
been published; the only appearance of his work in the open literature
has been the brief and somewhat cryptic summary in [CU 50']. He had
prepared a rather complex program for ENJAC in 1946, and this experience
led him to suggest a notation for program construction that is more
compact than flowcharts.

His aims, which correspond to important aspects of what we now call

"structured programming', were quite laudable:

The first step in planning the program is to analyze the computation
into certain main parts, called here divisions, such that the
program can be synthesized from them. Those main parts must be

such that they, or at any rate some of them, are independent
computations in their own right, or are modifications of such
computations. [CU SO,CH 34]

—




But in practice his proposal was not especially successful, because

the way he factored a problem was not very natural; his components

tended to have several entrances and several exits, and perhaps hiis
mathematical abilities tempted him too strongly to pursue the complexities
of fitting such pieces together. As a result, the notation he developed
was somewhat eccentric; and the work was left unfinished. Here is how

he might have represented the TPK algorithm:

F(t) = §|t| + 57:4)
i = {10:i} - {t = L(a+i)} = F(t) - {A:y}
- II - It7(0,i) i a1,
IT = {x=L(b+20-2i)} - {i:x} - III
- {w=L(b+21-2i)} = {y:w}
III = {y > 400} - {999:y} &0,

The following explanations should suffice to make the example clear,
although they do not reveal the full generality of his language:

{E:x} means "compute the value of expression E and store it in
location = ",

A denotes the accumulator of the machine.

{x = L(E)} means "compute the value of expression E and substitute
it into all appearances of ' x' in the following instruction
groups'' .

X - Y means "substitute instruction group Y for the first exit
of instruction group X ".

Ij denotes the j-th entrance of this routine, namely the beginning
of its j-th instruction group.

0, denotes the j-th exit of this routine (he used the words "input"

J
and "output" for entrance and exit).

n

{x >y} -0y &0, means "if x>y, go to 0O , otherwise to 0, ".

It7(m,i) ~ 0, &0, means "decrease i by 1, then if i >m go
"

to O2 , otherwise to OJ .

Actually the main feature of interest in Curry's early work is not

this programming language, but rather the algorithms he discussed for




converting parts of it into machine language. He gave a recursive
description of a procedure to convert fairly general arithmetic expressions
into code for a one-address computer, thereby being the first person to
describe the code-generation phase of a compiler. (Syntactic analysis

was not specified; he gave recursive reduction rules analogous to well-
known constructions in mathematical logic, assuming that any formula

could be parsed properly.) His motivation for doing this was stated in

[cu 50" ]:

Now von Neumann and Goldstine have pointed out that, as programs
are made up at present, we should not use the technique of program
composition [i.e., subroutines] to meke the simpler sorts of programs
-- these would be programmed directly -- but only to avoid
repetitions in programs of some complexity. Nevertheless, there
are three reasons for pushing clear back to formation of the
simplest programs from the basic programs [i.e., machine language
instructions], viz.: (1) Experience in logic and in mathematics
shows that an insight into principles is often best obtained by a
consideration of cases too simple for practical use -- e.g., one
gets an insight into the nature of a group by considering the
permutations of three letters, etc. ... (2) It is quite possible
that the technique of program composition can completely replace
the elaborate methods of Goldstine and von Neumann; while this may
not work out, the possibility is at least worth considering.

(3) The technique of program composition can be mechanized; if

it should prove desirable to set up programs, or at any rate certain
kinds of them, by machinery, presumably this may be done by

analyzing them clear down to the basic programs.

The program he would have constructed for F(t) , if t5 were replaced by
tetet 5 18

{1t]:a} = {VA:A} - {A:w]} = {t:R} = {tR:A} - {A:R} - {tR:A}

- {A:R} - [5R:A} - {A+tw:A} .

Here w 1is a temporary storage location, and R is a register used in

multiplication.




An Algebraic Interpreter.

The three languages we have seen so far were never implemented; they
served purely as conceptual aids during the programming process. Such
conceptual aids were obviously important, but they still left the
programmer with a lot of mechanical things to do, and there were many
chances for errors to creep in.

The first "high-level" programming language actually to be implemented
was the Short Code, originally suggested by John W. Mauchly in 1949,
William F. Schmitt coded it for the BINAC at that time. Late in 1950,
Schmitt recoded Short Code for the UNIVAC, with the assistance of
Albert B. Tonik, and J. Robert Logan revised the program in January of 1952.
Details of the system heve never been published, and the earliest
extant programmer's manual [RR 55] seems to have been written originally
in 1952.

The absence of data about the early Short Code indicates that it
was not an instant success, in spite of its eventual historic significance.
This lack of popularity is not surprising when we consider the small
number of scientific users of UNIVAC equipment in those days; in fact,
the most surprising thing is that an algebraic language such as this was
not developed first at the mathematically-oriented centers of computer
activity. Perhaps the reason is that mathematicians were so conscious
of efficiency considerations, they could not imagine wasting any extra
computer time for something a programmer could do by himself. Mauchly

had greater foresight in this regard; and J. R. Logan put it this way:

By means of the Short Code, any mathematical equations may

be evaluated by the mere expedient of writing them down. There

a7 A

is a simple symbological transformation of the equations into
code as explained by the accompanying write-up. The need for
special programming has been eliminated.

In our comparisons of computer time with respect to time
consumed by manual methods, we have found so far a speed ratio
of at least fifty to one. We expect better results from future

operations.

23 |




ese It is expected that future use of the Short Code will
demonstrate its power as a tool in mathematical research and

as a checking device for some large-scale problems. [RR 55]

We cannot be certain how UNIVAC Short Code looked in 1950; but
it probably was closely approximated by the 1952 version, when TPK
could have been coded in the following way.

Memory equivalents: i=W0, &=, ¥=7Y0.
Eleven inputs go respectively into words UO, T9, 18, ..., TO .

000000000000
010000000051  [1.0 in floating-decimal form]
010000000052  [10.0]

040000000053  [400.0]

AAATQOALARGE

050000000051  [5.0]

Constants:

8 RARBES
I

Equation number recall information [labels]:
O =1line 01, 1 =1line 06, 2 = line 07

Short Code:

i Equations Coded representation

? 00 i=10 00 00 00 WO 03 22

j 0L 0: y=(/abst)+5 cube t IO o200 29 L 10

i 02 00 YO 03 09 20 06

s 03 v 400  if<to 1 00 00 00 YO 75 k1 é
f ok i print, 'TOO LARGE' print-and-return 00 00 Z4 59 WO 58 i
f 05 0 0 if=to? 00 00 00 Z0 Z0 T2 ;
% 06 1: i print, y print-and-return 00 00 YO 59 WO 58 g
F 07 2: TO UO shift 00 00 00 TO U0 99 3
r 08 i=4i-1 00 WO 03 WO 01 Z1 %
i 09 0 i 1if<to O 00 00 00 Z0 WO Lo

k 10 stop 00 00 00 00 zz 08 i

2l :




Each UNIVAC word consisted of twelve 6-bit bytes, and the Short
Code equations were "symbologically" transliterated into groups of six

2-byte packets using the following equivalents (among others):

(58 Lo 06 abs value In (n+2)nd power 59 print and return carriage
02 ( o7 + 2n (n+2)nd root Tn  if= to n

05 = 08 pause bn if<to n 99 cyclic shift of memory
ok / 09 ) 58 print and tab Sn,Tn, eeey Zn quantities

Thus, " i = 10 " would actually be coded as the word " OO0 00 OO0 WO 03 2Z2 "
as shown; packets of 00 's could be used at the left to fill a word.
Multiplication was indicated simply by juxtaposition (see line 9&).

The system was an algebraic interpreter, namely an interpretive

routine which continuously scanned the coded representation and performed
the appropriate operations. The interpreter processed each word from
right to left, so that it would see the " =" sign last. This fact needed
to be understood by the programmer, who had to break long equations up
appropriately into several words (cf. lines Ol and 02); see also the
print instructions on lines Q4 and 06, where the codes run from right

to left.

This explanation should suffice to explain the TPK program above,
except for the "shift" on line 07. Short Code had no provision for
subscripted variables, but it did have a 99 order which performed a
cyclic shift in a specified block of memory. For example, line Q7 of
the above program means " temp = TO, TO = T, ..., T9 = U0, UO = temp ";
and fortunately this facility is all that the TPK algorithm needs.

The following press release from Remington Rand appeared in Journal

of the ACM, 1955, page 291:

Automatic programming, tried and tested since 1950, eliminates
communication with the computer in special code or language. ...
The Short-Order Code is in effect an engineering "electronic

dictionary" ... an interpretive routine designed for the solution

of one-shot mathematical and engineering problems.




(Several other automatic programming systems, including "B-zero" -- which
we shall discuss later -- were also announced at that time.) This is one
of the few places where Short Code has been mentioned in the open

) literature; Grace Hopper referred to it briefly in [HO 52, p. 243]

: (calling it "short-order code"), [HO 53, p. 142] ("short-code"),

[HO 58, p. 165] ("Short Code"). In [HM 53, p. 1252] it is stated that
the "short code" system was "only a first approximation to the complete
plan as originally conceived." This is probably true, but several
discrepancies between [HM 53] and [RR 55] indicate that the authors

of [HM 53] were not fully familiar with UNIVAC Short Code as it actually

existed.

The Intermediate PL of Burks.

Independent efforts to simplify the job of coding were being made
at this time by Arthur W. Burks and his colleagues at the University of
Michigan. The overall goal of their activities was to investigate the
process of going from the vague "Ordinary Business English" description
of a data-processing problem to the "Internal Program Language' description
of a machine~language program for that problem; and, in particular, to

break this process up into a sequence of smaller steps.

This has two principal advantages. First, smaller steps can
more easily be mechanized than larger ones. Second, different
kinds of work can be allocated to different stages of the
process and to different specialists. [BU 51, p. 12]

In 1950, Burks sketched a so-called "Intermediate Programming Language"
which was to be the step one notch above the Internal Program Language.
Instead of spelling out complete rules for this Intermediate Programming
Language, he took portions of two machine programs previously published
in [BU 50] and showed how they could be expressed at a higher level of
abstraction. From these two examples it is possible to make a reasonable
guess at how he might have written the TPK algorithm at that time:




1. 10 =i

Po. 10 .

From 1,35
10. A+i =11
3, LabE] - %
12, |’r;|l/2+5t5 Y
13. 400,y; 20,30

To 20 if y > koo

To 30 if y< koo

From 13
20. 999 = ¥

To 30

From 13,20
30. (B+20-2i)" =31
31, i - [B+20-2i]
32, (B+20 -2i)+1 - 33
33. y - [(B+20-2i)+1]
34, i-1 -1
35. 1,03 40,10

To 40 i e e

To 10 i 130

From 35
. F

Compute location of a;

Look up a;

&

Determine if V. = ¥.
i i

Compute location of b20-2i

Bogups =+
Compute location of b21-2i
Pateny = %y

i - i+l

Repeat cycle until 1 negative

Stop execution

and transfer to storage




Comments at the right of this program attempt to indicate Burks's

style of writing comments at that time; and they succeed in making the

program almost completely self-explanatory.

Note that the assignment

operation is well established by now; and Burks used it also in the

somewhat unusual form " i - i+l " shown in the comment to instruction 34
[BU 50, p. 41].
The prime symbol which appears within instruction 30 meant that the

computer was to save this intermediate result, as it was a common

subexpression that could be used later without recomputation. Burks

mentioned that several of the ideas embodied in this language were due

to Janet Wahr, Don Warren, and Jesse Wright.

Methods of assigning addresses and of expanding abbreviated

commands into sequences of commands can be worked out in advance.

Hence the computer could be instructed to do this work. ... It

should be emphasized, however, that even if it were not efficient

to use a computer to make the translation, the Intermediate PL

would nevertheless be useful to the human programmer in planning

and constructing programs. [BU 51, p. 13]

At the other end of the spectrum, nearer to Ordinary Business

Language, Burks and his colleagues later proposed ean abstract form of

description which may be of independent interest, even though it does

not relate to the rest of our story.

The following example suffices

to give the flavor of their "first Abstraction Language'", proposed in

1954

XI

c,d*(= 1 inst)

L (d: [k)s:u],[a,r])

1 ult <d<a*

(s-r) b

d<1l ult d<1l ult

(s-r) + ° p &
1 ult<d<d*

(s-r)

FORM XTI:

CUSTOMER'S STATEMENT

28




On the first line, c¢ denotes the customer's name and address; and d*
is " 1 inst ", the first of the current month. The symbol l:*i(xl""’xn) |
was used to denote a list of all n-tuples (xl,...,xn) of category i,
in order by the first component Xy 3 and the meaning of the second line

is "a listing, in order of date d , of all invoices and all remittances I
for the past month". Here [k,s,u] was an invoice, characterized by
its number k , its dollar amount s , and its discount u ; [a,r] was

a remittance of r dollars, identified by number a ; and " 1 ult " means

the first of the previous month. The bottom gives the customer's old
balance from the previous statement, and the new balance on the right.
"The notation is so designed as to leave unprejudiced the m.thod of the
statement's preparation." [BC 54] Such notations have not won over the
business community, however, perhaps for the reasons explained by

Grace Hopper in [HO 58, p. 198]:

I used to be a mathematics professor, At that time I found there

were a certain number of students who could not learn mathematics.

I then was charged with the job of making it easy for businessmen
to use our computers. I found it was not a question of whether
they could learn mathematics or not, but whether they would. ...
They said, "Throw those symbols out -- I do not know what they mean,
I have not time to learn symbols." I suggest a reply to those

who would like data processing people to use mathematical symbols
that they make them first attempt to teach those symbols to
vice-presidents or a colonel or admiral. I assure you that I

tried it.

Rutishauser's contribution.
~ A~

Now let us shift our attention once again to Europe, where the first
published report on methods for machine code generation was about to
appear. Heinz Rutishauser was working with the 74 computer which, by
then, had been rebuilt and moved to the Swiss Federal Institute of
Technology (E.T.H.) in Ziirich; and plans were afoot to build a brand new
machine there. The background of Rutishauser's contribution can best be

explained by quoting from a letter he wrote some years later:




I am proud that you are taking the trouble to dig into my 1952

pape . Un the other hand it makes me sad, because it reminds me
of th. prematu-e death of an activity that I had started hopefully
in 1949, but cculd not continue after 1951 because I had to do
other work -- to run practically singlehanded a fortunately slow
computer as mathematical analyst, programmer, operator and even
troubleshooter (but not as an engineer). This activity forced

me also to develrn new numerical methods, simply because the ones
then know:: ‘d no. vyork in larger problems. Afterwards when I
would have had more time, I did not come back to automatic
vrogramming but found more taste in numerical analysis. Only much
later I was invited -- more for historical reasons, as a living
fossil so to speak, than for actual capacity -- to join the ALGOL
venture, The 1952 paper simply reflects the stage where I had to
give up automatic programming, and I was even glad that I was able
to put out that interim report (although I knew that it was final).
[RU 63]

Rutishauser's comprehensive treatise [RU 52] described a hypothetical
computer and a simple algebraic language, together with complete
flowcharts for two compilers for that language. One compiler expanded
all loops out completely, while the other produced compact code using
index registers. His source language was somewhat restrictive, since
there was only one nonsequential control structure (the E‘Es statement);
but that control structure was in itself an important contribution to
the later development of programming languages. Here is how he might

have written the TPK algorithm:

1 Fir i = 10(-1)0

2 a; = t

3 (Sqrt Abs t) + (Gxtxtxt) ¢y
L Max(sgn(y-400), 0) 9= h

2 205 % Dyop

& (hx999) + ((1-h) x¥) = byy o4
1 Ende Index i

8  Schluss

30




"if ... then" construction --much less go to -- was present

~

in his language, the computation of

Since no

¥, Af y<hoo,
999 , if y > koo,

has been done here in terms of the Max and Sgn functions he did have,
plus appropriate arithmetic; see lines L4 and 6. (The function Sgn(x)
g0 HE a0l Ten A1 AR WS 0, 0r =1 '4f ® < O .) Another
problem was that he gave no easy mechanism for converting between
indices and other variables; indices (i.e., subscripts) were completely
tied to Fiir -Ende loops. The above program therefore invokes a
trick to get i into the main formula on line 4; " 2 Oi " is intended
to use the 7 instruction which transfered an indexed address to the
accumulator in Rutishauser's machine [RU 52, p. 10], and it is possible
to write this in such a way that his compiler would produce the correct
code. It is not clear whether or not he would have approved of this
trick; if not, we could have introduced ancther variable, maintaining
its value equal to i . But since he later wrote a paper entitled
"Interference with an ALGOL procedure," there is some reason to "elieve
he would have enjoyed the trick very much.

As with Short Code, the algebraic source code symbols had to be
transliterated before the program was amenable to computer input, and
the programmer had to allocate storage locations for the variables and
constants., Here is how our TPK program would have been converted to a
sequence of (floating-point) numbers on punched paper tape, using the
memory assignments a; = TOO+ 4 bi & 20044 ; 0=300 5 1 =301 ,
5=302, 40=303, 99 =30k, y=305, h=306, t=2307




Fir i=210 (1) o0
12

p 3Oy 80 10 o =1 0.,
begin stmt a sub i > t
2 010000 , 100 , .00L , 200000 , 307 , Q ,
begin stmt ( G Abs dummy Sqrt
3 010000 , 010000 , 307 , 110000 , o , 350800 , .
dunmy ) £ ( 5 X t X
0 , 2000000 , 020000 , 010000 , 302 , 060000 , 307 , 060000 ,
% X t ) > y
307 , 060000 , 307 , 200000 , 200000 , 305 , Q ,
4 begin stmt ( ( Vg - 400 ) Sen
: L 010000 , 010000 , 010000 , 305 , 030000 , 303 , 200000 , 100000 ,
dummy ) Max 0 2 h
0 , 200000 , 080000 , 300 , 2000000 , 306 , Q ,
begin stmt Z Qi sub 1 = S b20 sub -2i
5 010000 , 0 ; 250000 , 0, OO , 200000 ; 290 4, =002 4 G,
begin stmt ( h X 999 ) + (
6 0100000 , 010000 , 306 , 060000 , 304 , 200000 , 020000 , 010000 ,
( 1 - h ) X y ) >
,. 010000 , 301 , 030000 , 206 , 200000 , 060000 , 305 , 200000 , 200000 ,
b21 sub -2i
221 ) "0002 5] Q 5]
Ende
L Qs Q,
Schluss
8 Qs Q.

32




Here Q represents a special flag that was distinguishable from
all numbers. The transliteration is straightforward, except that unary

operators such as " Abs x" have to be converted to binary operators

"x AbsO". An extra left parenthesis is inserted before each formula,
to match the == (which has the same code as right parenthesis).
Subscripted variables whose address is O+ 2 Cjij are specified by
writing the base address «a followed by a sequence of values cJ.lO'3J %
this scheme allows multiple subscripts to be treated in a simple way.
The operator codes were chosen to make life easy for the compiler;
for example, 020000 was the machine operation "add" as well as the
input code for + , so the compiler could treat almost all operations
alike. The codes for left and right parentheses were the same as the
machine operations to load and store the accumulator, respectively.
Since his compilation algorithm is published and reasonably simple,
we can exhibit exactly the object code that would be generated from the
above source input. The output is fairly long, but we shall consider
it in its entirety in view of its importance from the standpoint of
compiler history. Each word in Rutishauser's machine held two instructions,

and there were 12 decimal digits per instruction word.

Machine instruction Symbolic form
230010 200050 10-+0p, Op—~1i,
230001 120000 LI ~+0p,y =0Op = 0p,
200051 230000 Op =i’ , 0 - 0Op
200052 220009 Op = i% , *1 = IR,
239001 200081 IRy ~ Op , Op = L;
000000 230100 No-op , loc a — Op
200099 010050 Oop-T, 1-0p
020099 210001 OptT = Op , Op — IR,
011000 200307 a; ~O0p, Op =t
010307 110000 t -0p, |Op| = Op
220009 350800 *+1 - IRy » €0 to Sqrt
000000 000000 no-op, no=-op

200999 010302 Op - Pl y » = 0p




Machine Instruction

060307 060307
060307 200998
010999 020998
200305 010305
030305 200999
010999 100000
200998 010998
: 080300 200306
[ 230000 200099
010050 020099
210001 230220
: 200099 230002
9 120000 060050
; 020099 210002
010000 231000
202000 230221
200099 230002
120000 060050
020099 210001
010301 030306
200999 010306
060304 200998
010999 060305
200997 010998
020997 201000
010081 210009
010050 220008
030052 388003
010050 020051
200050 359000
000000 999999
999999

Symbolic form

Opxt -0p, Opxt - Op
Opx’c—oOp,Op--P2
P) = 0p, Op+B, = Op
Op -y, ¥y-0p
OP'LLOO"'OP: OP"'Pl
P, - 0p, Sgn Op - Op
Op - D Pz"‘OP
Max(0p,0) = Op , Op = h ,
O-0p, Op-T

i-0Op, OptT - Op

Op = IR, » loc b20 - Op
Oop-T, 2-0p
-0p - Op , Opxi - Op
OptT - Op , Op - IR,
(0)-Op, IRl"’OP
o Vogeny ¢+ 100 By = 0P
Oop-T, 2-0p
=0p - 0p, Opxi—~Op
OptT - Op , OP"T-R_-L
l-0p, Op-h - Op

Op - 1:1’1*0?
Opx999 - Op , OP"'P2
Pl“OP: Op xy - Op
Op - 3)P2"’OP

WS = OB & P % Do ps
Ll - O0p, Op - IR9
i-0p, 1 - IRg

Op-i” - Op , to (IR8+3) if Op = O
i-0p, Opti” - Op

Op -1i, to (IR9)

no-op , stop

stop




(Several bugs on pp. 39-40 of [RU 52] needed to be corrected in order
to produce this code, but Rutishauser's original intent was reasonably
clear, The most common error made by a person who first tries to write
a campiler is to confuse compilation time with object-code time, and
Rutishauser gets the honor of being first to make this error!)

The above code has the interesting property that it is completely
relocatable -- even if we move all instructions up or down by one-half
a word, Careful study of the output shows that index registers were
treated rather awkwardly; but after all, this was 1951, and many
campilers even nowadays produce far more disgraceful code than this.,

Rutishauser published slight extensions of his source language
notation in [RU 55] and [RU 55'].

Botme Soopiler.

An Ttalian graduate student, Corrado Bohm, developed a compiler at
the same time and in the same place as Rutishauser, so it is natural to
assume -- as many people have -~ that they worked together. But in fact,
their methods had essentially nothing in common. BShm (who was a student
of Eduard Stiefel) developed a language, a machine, and a translation
method of his own, during the latter part of 1950, knowing only of
[GV 47] and [ZU L48]; he learned of Rutishauser's similar interests only
after he had submitted his doctoral dissertation in 1951, and he amended
the dissertation at that time in order to clarify the differences between

their approaches,




Bohm's dissertation [BO 52] was especially remarkable because he

not only described a complete compiler, he also defined that compiler ;
in its own language! And the language was interesting in itself, :
because every statement (including input statements, output statements, !

and control statements) was a special case of an assignment statement. ]

Here is how TPK looks in Bohm's language:

A. Set 1 =0 (plus the - A
base address 100 for 100 - i
the input array a ). B ~ =«
B. Let a new input a; be ' - B
given. Increase i by unity, ? = {1
and proceed to € if 4 > 10 ; kel VR
otherwise repeat B . [(1N(i2130))scl+[(12(12110))+B] = =
(S (= R G — 0 (9 (g e O
110 - i
D. Call x the number a; Y =D
and prepare to calculate = x
its square root r (using E - X
subroutine R ), returning R -«
to E .
E. Calculate f(ai) and e o
attribute it to y . rHdelielioli - y }
If y > 400, continue [(L N (y2400)) *F1+[(12(y2L00))+G] ~ =

at F, otherwise at G.

F. Output the actual value B )
of i , then the value i=100 =~ ? ;
999 ("too large"). 99 = % :
Proceed to H. H - =«

36




-

G. Output the actual - G
values of i and y . 1100 -~ ?
Y= 7/

H = =

H. Decrease i by unity, n' - H
and return to D 1if i2l ~ i

i > 0. Otherwise stop. [(12(100%1))DI+[(1 N (100%i))-qQ] - =

Here comments in an approximation to BShm's style appear on the left,
while the program itself is on the right. As remarked earlier, every-

thing in Bohm's language appears as an assignment. The statement

" "

B—-xn" means " go to B ", i.e., set the program counter =n +to the
value of variable B . The statement " n' - B " means "this is label B";
a loading routine preprocesses the object code, using this type of
statement to set the initial value of variable B rather than to store
an instruction in memory. The symbol " ? " stands for the external

" means "input a value and assign

world, hence the statement " ? - x
it to x"; the statement " x - ? " means "output the current value of x".
An arrow " | " is used to indicate indirect addressing (restricted to
one level); thus, " ? — |i " in part B means '"read one input into the

"

location whose value is 1", namely into a; -

BShm's machine operated only on nonnegative integers of 14 decimal

digits. As a consequence, his operation x<y was the logician's

subtraction operator,

X=y 2 R i

-

0 ’ i ¥y
He also used the notation xNy for min(x,y) . Thus it cen be verified
that

1 ., 4f 253
1n(i23) =

0 » 4f 1%J; 18




o
~

b s U T
12(143) =
1A e

Because of these identities, the complicated formula at the end of part B

is equivalent to a conditional branch,

Can, §f 1>130 ;
B-n, if i <110 .

It is easy to read Bohm's program with these notational conventions
in mind. Note that part C doesn't end with " D - n ", although it could
have; similarly we could have deleted " B - n " after part A. (BShm
omitted a redundant go-to statement only once, out of six chances he
had in [BO 52].)

Part D shows how subroutines are readily handled in his language,
although he did not explicitly mention them. The integer square root
subroutine can be programmed as follows, given the input x and the

exit location X

R. Set r=0 and t=2" . ' - R
G =

7036874417766 - t

S - =«

S. If r+t<x, goto T, X' = 8
otherwise go to U . rtt<x - u

1. Decrease x by r+t ; ' = T
divide r by 2 , increase Xr<t = x

r by t, and go to V. r:i2+t -

V = =«

U. Divide r by 2 . nt - U
e - ¥




R 14 2 g e

T T N T ——

V. Divide &t by & . If &t =10 ; a - U
exit, otherwise return to S. t:h -t

[(12t)-x]+[(1Nt)-5]

!
=2

(This algorithm is equivalent to the classical pencil-and-paper method

for square roots, adapted to binary notation. It was given in hardware-
oriented form as example P9.18 by Zuse in [2U 45, pp. 143-159]. To prove
its validity, one can verify that the following invariant relations hold

when we reach step S:

t is a power of 4 ;
r is a multiple of Lt ;
r°/bt +x = initial value of x;

0 < x < 2rtht .

At the conclusion of the algorithm these conditions hold with t = 1/k4 ;
so r 1is the integer square root and x is the remainder.)

BShm's one-pass compiler was capable of generating instructions
rapidly, as the input was being read from paper tape. Unlike Rutishauser,
Bohm recognized operator precedence in his language; for example, r:2+t
was interpreted as (r:2)+t , the division operator " : " taking
precedence over addition. However, Bohm did not allow parentheses to be
mixed with precedence relations: If an expression began with a left é

parenthesis, the expression had to be fully parenthesized even when

T

associative operators were present; on the other hand if an expression
did not begin with a left parenthesis, precedence was considered but no
parentheses were allowed within it. The complete program for his

compiler consisted of 114 assignments, broken down as follows:

R T s N T v AR o 2

(1) 59 statements to handle formulas with parentheses

/

(ii) 51 statements to handle formulas with operator precedence

.

(i1i) L statements to decide between (i) and (ii). 4

There was also a loading routine, described by 16 assignment statements;
so the compiler amounted to only 130 statements in all, including 33 i
statements which were merely labels (@' — ...) . This brevity is 1§

especially surprising when we realize that a good deal of the program

N




was devoted solely to checking the input for correct syntax; this check
was not complete, however. [It appears to be necessary to add one more
statement in order to fix a bug in his program, caused by overlaying
information when a left parenthesis follows an operator symbol; but even
with this "patch" the compiler is quite elegant.]

Rutishauser's parsing technique often required order n2 steps to
process a formula of length n . His idea, which we have seen illustrated
above, was to find the leftmost pair of parentheses which have the highest
level, so that they enclose a parenthesis-free formula @ , and to compile
the code for " a - Pq "; then the subformula " (x) " was simply replaced
by " Pq ", q was increased by 1 , and the process was iterated until
no parentheses remained. BOShm's parsing technique, on the other hand,
was of order n , generating instructions in what amounts to a linked
binary tree while the formula was being read in; to some extent, his
algorithm anticipated modern list-processing techniques, which were first
made explicit by Newell, Shaw, and Simon about 1956 (cf. [KN 68, p. 457]).
Here is a brief indication of how Bohm's algorithm would have translated
the statement ((a:(b-c))+((dNe)2f)) - g , assuming that the bug referred

to above had been removed:

o)




Current Current Contents of tree (instructions and stack pointers)

partial position
® Gho @

Input instruction in tree

©

( @) ©

( ® © @

a a @ © @

= a: ® © @

( @ | [«0.0®

o b ® |® =0,Q (@

- v 1O |0 |«0.0@

c bec (3) (:) a:(z),(j) (:)

) ® © 2:, Q@ |b-c-C)

) (:) (:) a:(ED -*(:) b.c ~(:)

+ @+ @ © a:3 ~@|b-c -G

( ® OHOHE HORIOLXEIE) (@

( ® @+®, PO -O|v-c~-Q|® ®

a a ® @+®, a:Q ~O| < -O|@ ®

N an (:) (:)4-(:),(:)51:(:> -—(é) b-c-a(:)(j) (ED

e dNe @ @+®,@a:@ ..@ b-c—'®@ @

) ® @+®.Q@=:0 -@|v-c~-Q|D ane-Q
: OF ® @+®,0a:Q ~-@|vc-O|@ ane-Q
£ ®:r | ® @+®,a:0 ~@|r---O|@ ane-Q
) @ @+®,0p:0 -@v-c~-O|@:-®) ane-Q
) © @+®-Qfa:Q - Blr-c~Q@:r~®f ane -0
- | @ | 0 |®0-ge-0-0-®:n-O

At this point the contents of the tree would be punched out, in reverse

preorder:

dNe - (:)
@ -®
b-c—o@
a:® - @
0O -0

and the following symbol " g " would evoke the final instruction " <:) -g".

L1




Bohm's compiler assumed'that the source code input would be trans-
literated into numeric form, but in an Italian patent filed in 1952 h¢
proposed that it should actually be punched on tape using a typewriter
with the following keyboard [BO 52', Fig. 9]:

OOOOEBOOOOO
OJOXCIOXOXOROIGXOXOXO,
OJOJOICIOXOROIONOXO)

DIOHGH U ORORCIGRD
& )

Constants in the source program were to be assigned a variable name and
input separately.

Of all the authors we shall consider, Bohm was the only one who gave
an argument that his language was universal, i.e., capable of computing

any computable function.

Meanwhile, in England.

Our story so far has introduced us to many firsts, such as the first
algebraic interpreter, the first algorithms for parsing and code generation,
the first campiler in its own language. Now we come to the first real
compiler, in the sense that it was really implemented and used; it really
took algebraic statements and translated them into machine language.

The unsung hero of this development was Alick E. Glennie of Fort Halstead,
the Royal Armaments Research Establishment. We may justly say "unsung"
because it is very difficult to deduce from the published literature that
Glennie introduced this system. When Christopher Strachey referred favorably
to it in [ST 52, pp. 46-47], he did not mention Glennie's name, and it was
inappropriate for Glennie to single out his own contributions when he co-authored
an article with J. M. Bennett at the time [BG 53, pp. 112-113]. 1In fact,
there are apparently only two published references to Glennie's authorship
of this early compiler; one of these was a somewhat cryptic remark inserted
by an anonymous referee into a review of BShm's paper [TA 56] while the
other appeared in a comparatively inaccessible publication [MG 53].

L2




Glennie called his system AUTOCODE; and it may well have helped to inspire
many other "Autocode" routines, of increasing sophistication, developed
during the late 1950's. Strachey said that AUTOCODE was beginning to
come into use in September, 1952. The Manchester Mark I machine language
was particularly abstruse -- see [WO 51] for an introduction to its
complexities, including the intricacies of Teleprinter code (used for
base-32 arithmetic, backwards) -- and its opaqueness may have been why
this particular computer witnessed the world's first compiler. Glennie
stated his motivations this way, at the beginning of a lecture he

delivered at Cambridge University in February, 1953%:

The difficulty of programming has become the main difficulty
in the use of machines. Aiken has expressed the opinion that the
solution of this difficulty may be sought by building a coding
machine, and indeed he has constructed one. However it has been
remarked that there is no need to build a special machine for
coding, since the computer itself, being general purposce, should

be used. ... To make it easy, one must make coding comprehensible.

This may be done only by improving the notation of programming.
Present notations have many disadvantages: all ase incoaprehensible
to the novice, they are all different (one for each machine) and
they are never easy to read. It is quite difficult to decipher
coded programmes even with notes, and even if you yourself made
the programme several months ago.

Assuming that the difficulties may be overcome, it is obvious
that the best notation for programmes is the usual mathematical
notation, because it is already known. ...

Using a familiar notation for programming has very great
advantages, in the elimination of errors in programmes, and the

simplicity it brings. [GL 52]

His reference to Aiken should be clarified here, especially because
Glennie stated several years later [GL 65] that "I got the concept from
a reported idea of Professor Aiken of Harvard, who proposed that a
machine be built to make code for the Harvard relay machines." Aiken's

coding machine for the Harvard Mark III was cited also by Bohm

L3




)

[BO 52, p. 176]; it is described in [HA 52, pp. 36-38, 229-263, illustrated
on pp. 20, 37, 230]. By pushing appropriate buttons on the console of i

this machine, one or more appropriate machine codes would be punched

on tape for the equivalent of three-address instructions such as

" -b3 x|ci| -ai " or " 1//X9 - r0 "; there was a column of keys for
selecting the first operand's sign, its letter name, and its (single)
subscript digit, then another column of keys for selecting the function

name, etc. (Incidentally, Heinz Rutishauser is listed as one of the

i e B+ & s il A sy, A cadaiaiis

fifty-six authors of the Harvard report [HA 52]; his visit to America
in 1950 is one of the reasons he and Bdhm did not get together.)
Our TPK algorithm can be expressed in Glennie's AUTOCODE as follows: |

c@VA t@IC x@gC y@RC z@NC |

3 1
2 INTEGERS +5 — ¢
3 1t
L +t TESTA Z
2x -t
4 6 ENTRY Z
1 SUBROUTINE € —z
8 +tt -y -x !
‘ 5 +Hx -y -x
10 +z+cx CLOSE WRITE 1
1l aG/# b@MA cGGA d@OA e@PA f@HA iGVE XGME !
12  INTEGERS +20 =b +10 —c +400 —»d +999 —e +1 ~f
13 LOOP 1On
14 n —x
1> +b-x-x
16 X =q
17  SUBROUTINE 5 —aq
18 REPEAT n
19 +c -1
20 LOOP 10n
21 +an SUBROUTINE 1 -y
22 +d-y TESTA Z

LL




+i SUBROUTINE 3 i
+e SUBROUTINE L
CONTROL X
ENTRY Z
+i SUBROUTINE 3
+y SUBROUTINE L
ENTRY X
+i-f =1 i
REPEAT n |
ENTRY A CONTROL A WRITE 2 START 2

R I RS 13 S 1 B 2

Although this language was much simpler than the Mark I machine code,
it was still very machine-oriented, as we shall see. (Rutishauser and
BShm had had a considerable advantage over Glennie in that they had
designed their own machine code.) Lines 1 -10 of this program represent
a subroutine for calculating f(t) ; " CLOSE WRITE 1 " on line 10 says
that the I&eceding lines constitute subroutine number 1. The remaining
lines yield the main program; " WRITE 2 START 2 " on line 32 says that
the preceding lines constitute subroutine number 2, and that execution
starts with number 2.

Let's begin at the beginning of this program and try to give a
play-by-play account of what it means. Line 1 is a storage assignment
for variables c,t,x,y , and 2z , in terms of absolute machine
locations represented in the beloved Teleprinter code. Line 2 assigns |
the value 5 to c¢ ; like all early compiler-writers, Glennie shied
away from including constants in formulas. Actually his language has
been extended here: he had only the statement "FRACTIONS" for producing
constants between -3 and 'y assuming that a certain radix point
convention was being used on the Manchester machine. Since scaling
operations were so complicated on that computer, it would be inappropriate
for our purposes to let such considerations mess up or distort the
TPK algorithm; thus the INTEGERS statement (which is quite in keeping
with the spirit of his language) has been introduced to simplify our i

exposition. ]

45




Upon entry to subroutine 1, the subroutine's argument was in the

machine's lower accumulator; line 3 assigns it to variable t . Line 5
3 line 5 puts -t in the

accumulator; and line 6 defines label Z°'. Thus the net effect of lines

means " go to label Z if t is positive

L4 thru 6 is to put |t| into the lower accumulator. Line 7 applies
subroutine 6 (integer square root) to this value, and stores it in =z
On line 8 we compute the product of t by itself; this fills both
upper and lower accumulators, and the upper half (assumed zero) is
stored in y , the lower half in x . Line 9 is similar, now Xx
contains ek Finally line 10 completes the calculation of £(5)

by leaving 2z+5x in the accumulator. The "CLOSE" operator causes the
campiler to forget the meaning of label Z , but the machine addresses
of variables e , X 5y ¥ 5 and ‘2 remain in force.

Line 11 introduces new storage assignments, and in particular it
reassigns the addresses of ¢ and x . New constant values are defined
on line 12. Lines 13 thru ;@ constitute the input loop, enclosed by
LOOP 10n ... REPEAT n ; here n denotes one of the index registers
(the famous Manchester B-lines), the letters k, 1, n, o, q, T
being reserved for this purpose. Ioons in Glennie's language were
always done for decreasing values of the index, up to and including O ;
and in our case the loop was performed for n = 20,18,16,...,2,0 .

These values are twice what might be expected, because the Mark I
addresses were for half-words. Lines ;& thru 16 set index q equal
to 20-n ; this needs to be done in stages (first moving from n to

a normal variable, then doing the arithmetic, and finally moving the
result to the index variable). The compiler recognized conversions
between index variables and normal variables by insisting that all
other algebraic statements begin with a + or - sign. Line 17 says
to store the result of subroutine 5 (an integer input subroutine) into
variable 8q

Lines 20 thru 31 comprise the output loop. Again n has the value
so the true value of i has been maintained in parallel with n (see
lines 19 and 30). Line 21 applies subroutine 1 (namely our subroutine
for calculating f(t) ) to a, and stores the result in y . Line 22

L6

21’




branches to label Zz if LOO >y ; line 2> is an unconditional jump

to label X . Line 23 outputs the integer i , using subroutine 3, and
subroutine 4 in line 24 is assumed to be similar except that a carriage-
return and line-feed are also output. Thus the output is correctly
performed by lines 22 thru 29.

The operations " ENTRY A CONTROL A " on line 32 define an infinite
loop " A: go to A "5 this was the so-called dynamic stop used to
terminate a computation in those good old days.

Our analysis of the sample program is now complete, Glennie's
language was an important step forward, but of course it still remained
very close to the machine itself, And it was intended for the use of
experienced programmers. As he said at the beginning of the user's
manual [GL 52'], "The left hand side of the equation represents the
passage of information to the accumulator through the adder, subtractor,
or multiplier, while the right hand side represents a transfer of the
accumulated result to the store." The existence of two accumulators

complicated matters; for example, after the multiplication in lines §
)

and 9 the upper accumulator was considered relevant (in the -y ), while

"

elsewhere only the lower accumulator was used, The expression " +atbe
meant "load the lower accumulator with a , then add it to the double
length product bec ", while " +beta " meant "form the double length
product bc , then add a into the upper half of the accumulator".
Expressions like +ab+cd+ef were allowed, but not products of three
or more quantities; and there was no provision for parentheses. The
language was designed to be used with the ?2-character Teleprinter code,
where - was substituted for " .,

We have remarked that Glennie's papers have never been published;
this may be due to the fact that his employers in the British atomic
weapons project were in the habit of keeping documents classified.
Glennie's work was, however, full of choice quotes, so it is interesting

to repeat several more remarks he made at the time:

There are certain other rules for punching that are merely a
matter of common sense, such as not leaving spaces in the middle
of words or misspelling them, I have arranged that such accidents

will cause the input programme to exhibit symptoms of distress ...

7




‘ This consists-of the programme coming to a stop and the machine
‘ making no further moves.
[The programme] is quite long but not excessively long, about
4 750 orders. ... The part that deals with the translation of the
i algebraic notation is the most intricate programme that I have ever
devised ... [but the number of orders required] is a small
fraction of the total, about 1LO.

My experience of the use of this method of programming has
3 been rather limited so far, but I have been much impressed by
| the speed at which it is possible to make up programmes and the
certainty of gaining correct programmes., ... The most important
feature, I think, is the ease with which it is possible to read

back and mentally check the programme. And of course on such

;,f' features as these will the usefulness of this type of programming
1 be judged. [GL 52]
. At the beginning of the user's manual [GL 52'], he mentioned that
"the loss of efficiency (in the sense of the additional space taken by
3 routines made with AUTOCODE) is no more thar about 10%." This remark
: appeared also in [BG 53, p. 113], and it may well be the source of the
] oft-heard opinion that compilers are "90% efficient".
On the other hand, Glennie's compiler actually had very little
E tangible impact on other users of the Manchester machine. For this reason,

Brooker did not even mention it in his 1958 paper entitled "The Autocode

Programs developed for the Manchester University Computers" [BR 58].

This lack of influence may be due in part to the fact that Glennie was
not resident at Manchester, but the primary reason was probably that his
system did little to solve the really severe problems that programmers
had to face, in those days of small and unreliable machines. An
improvement in the coding process was not regarded then as a breakthrough

of any importance, since coding was often the simplest part of a programmer's

task. When one had to wrestle with problems of numerical analysis, scaling,
and two-level storage, meanwhile adapting one's program to the machine's

current state of malfunction, coding itself was quite insignificant.




S ——

Thus when Glennie mentioned his system in the discussion following
’ [MG 53], it met with a very cool reception., For example, Stanley Gill's

comment reflected the prevailing mood:

It seems advisable to concentrate less on the ability to write,

o ey e

| say
i *+ogdH bt db ¢ ﬁ 
as it is relatively easy for the programmer to write 7
A a 3
Ab '
Ha
Y b
e s [MG 53, p. 79]

_,,,,V,“,,,.v.,ﬁz.‘y
A

i e R AN R, i

Nowadays we would say that Gill had missed a vital point, but in 1953

his remark was perfectly true.

v

Some 13 years later, Glennie had the following reflections (GL 65]:

[The compiler] was a successful but premature experiment,

Two things I believe were wrong: (a) Floating-point hardware

T BT

had not appeared. This meant that most of a programmer's effort
E was in scaling his calculation, not in coding. (b) The climate
of thought was not right. Machines were too slow and too small. 5
It was a programmer's delight to squeeze problems into the

smallest space. e

I recall that automatic coding as a concept was not a novel
3 concept in the early fifties, Most knowledgeable programmers
knew of it, I think. It was a well known possibility, like the
possibility of computers playing chess or checkers. ... [Writing
) the compiler] was a hobby that I undertook in addition to my
employers' business: they learned about it afterwards. The

compiler ... took about three months of spare time activity to

complete,




e

T —

Early American "Compilers".
i e el

None of the authors we have mentioned so far actually used the word
"compiler" in connection with what they were doingj; the terms were

automatic coding, codification automatique, Rechenplanfertigung. In fact

it is not especially obvious to programmers today why a compiler should be
so called. We can understand this best by considering briefly the other
types of programming aids that were in use during those early days.

The first important programming tools to be developed were, of course,
general-purpose subroutines for such commonly needed processes as
input-output conversions, floating-point arithmetic, and transcendental
functions. Once a library of such subroutines had been constructed, there
was time to think of further ways to simplify programming, and two
principal ideas emérged: (a) Coding in machine language could be made
less rigid, by‘'using blocks of relocatable addresses [WH 50]. This idea

Al

was extended by M. V. Wilkes to the notion of an “assembly routine", able
to combine a number of subroutines and to allocate storage [WW 51, pp. 27-32];
and Wilkes later [WI 52, WI 53] extended the concept further to include
general symbolic addresses (i.e., not simply relative to a small number of
origins). For many years these were called "floating addresses". Similar
developments in assembly systems occurred in America and elsewhere;

cf. [RO 52]. (b) An artificial machine language or pseudo-code was
devised, usually providing easy facilities for floating-point arithmetic
as if it had been built into the hardware. An "interpretive routine"
(sometimes called "interpretative" in those days) would process these
instructions, emulating the hypothetical computer. The first interpretive
routines appeared in programming's first textbook, by Wilkes, Wheeler,

and Gill [WW 51, pp. 34-37, 7h4-77, 162-164]; the primary aim of this book
was to present a library of subroutines and the methodology of their use.
Shortly afterwards a refined interpretive routine for floating-point
calculation was described by Brooker and Wheeler [BW 53], including the
ability for subroutines nested to any depth. Interpretive routines in
their more familiar comvact form were introduced by J. M. Bennett (cf.

[WW 51, Preface and pp. 162-164], [BP 52]); the most influential was
perhaps John Backus's IBM 701 Speedcoding System [BA 5%, BH 54]. As we

have already remarked, Short Code was a different sort of interypretive




routine. The early history of library subroutines, assembly routines,
and interpretive routines remains to be written; we have just reviewed
it briefly here in order to put the programming language developments
into context.

During the latter part of 1951, Grace Murray Hopper developed the
idea that pseudo-codes need not be interpreted, they could also be

expanded out into direct machine language instructions. She and her

associates at UNIVAC proceeded to construct an experimental program
which would do such a translation, and they called it a compiling routine.
To compile means to compose out of materials from other documents.

Therefore, the compiler method of automatic programming consists
of assembling and organizing a program from programs or routines
or in general from sequences of computer code which have been

made up previously. [MO 54, p. 15]

(See also [HO 55, p. 22].) The first "compiler" in this sense, named A-O,
was in operation in the spring of 1952, when Dr. Hopper spoke on the
subject at the first ACM National Conference [HO 52]. Incidentally,
M. V. Wilkes came up with a very similar idea, and called it the method of
"synthetic orders" [WI 52]; we would now call this a macro expansion.

The A-O "compiler" was improved to A-1 (January, 1953 ) and then
to A-2 (August, 1953); the original implementors were Richard K. Ridgeway
and Margaret H. Harper. Quite a few references to A-2 have appeared in
the literature of those days [HM 53, HO 53, HO 53', MO 5k, WA 54], but
these authors gave no examples of the language itself. Therefore it will
be helpful to discuss here the state of A-2 as it existed late in 1953,
when it was first released to UNIVAC customers for testing [RR 53]. As
we will see, the language was quite primitive by comparison with those
we have been studying, and this is why we choose to credit Glennie with
the first compiler although A-O was completed first; yet it is important
to understand what was called a "compiler" in 1954, in order to appreciate
the historical development of programming languages.

Here is how TPK would have looked in A-2 at the end of 1953:

sl




Use of working storage

TV ST T Y TR Y T T ey

TRy

b im0

Y T XY )Y Y T

00 02 ok op OB 1o, 12 "1k ke BLF6 38 Lo L2 -58
10 5 koo -1 @ L 5 ay to ag 1 HYLY” t,t7,t” temp storage
Program
0. GMIO00 000002 Read input and necessary constants from T2
ITEMO1 WS.000
SERVO2 BLOCKA
1RGOOO 000000
1. GMMOOO Q00001
000180 020216 10.0 =1
1RGOOO 001000
2.  AMOO34 03k4oLo aiq =t
3. RNAOLO 010040 */t - 7
L. APNO3L 012038 a;ﬂ = ¥
5. AMO002 038038 S5y =y~
AAOOLO 038038 titys =y~¥
T« ASOOCE 0368040 = hOQ-y7z = t7
8. OWNACO DEAOO3
KO000O  KOO0O00
FOO912 EOO1RG if t” > 0, go on to Op. 10
000000 QOO1CN
1RGOOO 008040
1CNOOO 000010
9. GMMOOO 000001
000188 020238 ' AAATOO ALARGE AAAAAA ADAALA' = Y7
1RGOOO 009000
10. YTO036 038000 Print i,y”
11. GMMOOO 000001
000194 200220 Move 20 words from WS1L4 to WSLO
1RGOO0O 011000




X

"y

12. GMMOGO 000001
000222 200196 Move 20 words from WSLO to WS16
1RGOOO 012000

13. ALIO12 FOOOTi
1RGOOO 013036 Replace i by i+(-1) and go to Op. 2
2RGOOO 000037 if i # -1, otherwise go to Op. 1h
3RGO00 000006
LRGOOO 000007
5RGO00 000006
6RGO0OO 000007
1CNOOO 000002
2CNOOO 00001k
1RS000 000036
2RS000 000037

14. OWNACO DEACO2
810000 820000 Rewind tapes 1 and 2, and halt.
900000 900000
1RGOOO 014000

RPENDA INFO.R
There were 60 words of working storage, and each floating-point number
used two words. These working storages were usually addressed by numbers
00,02, ... ,58 , except in the (MM instruction (move generator) when

they were addressed by 180,182, ...,238 respectively; see operations

1, 9, 11, and 12. Since there was no provision for absolute value
operations 2 and 3 of this program find Vlalol by computing %J;§; i
(The A-2 compiler would replace most operators by a fully expanded subroutine,
in linej this subroutine would be copied amew each time it was requested,
unless it was one of the four basic floating-point arithmetic operations.)
Since there was no provision for subscripted variables, operations 11
and 12 shift the array elements after each iteration.

Most arithmetic instructions were specified with a three-address

code, as shown in operations 2 thru 7. But at this point in the development




of A-2 there was no way to test the relation " > " without resorting

to machine language -- only a test for equality was built in -- so
operation 8 specifies the necessary UNIVAC instructions. (The first ;
word in operation 8 says that the following 003 lines contain UNIVAC

code. Those three lines extract (E) the sign of the first numeric {
argument (1RG) using a system constant in location 912 , and if it f
was positive they instruct the machine to go to program operator 1CN . ;
The next two lines say that 1RG is to be t” (working storage L0 ),
and that 1CN is to be the address of operation 10. The " 008" in the
1RG specification tells the compiler that this is operation 8; such
redundant information was checked at compile time. Note that the
compiler would substitute appropriate addresses for 1RG and 1CN

in the machine language instructions. Since there was no notation

for " 1RG+1 ", the programmer had to supply ten different parameter

lines in operation 13.

By 1955, A-2 had become more streamlined, and the necessity for
OWN CODE in the above program had disappeared; see [FR 55] for a description
of A-2 coding, vintage 1955. (Another paper [TH 55] also appeared at that time,
rresenting the same example program.) Operations 7 and the following of

the above program could now be replaced by

7. Q0038 004000 To Op. 9 if<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>